How to Calculate Percentage Maths Literacy

April 24, 2025 5 min read

Percentages are a fundamental part of everyday maths literacy. They help us understand proportions, discounts, increases, and a whole lot more. Mastering percentage calculations is crucial for making informed decisions in various real-life scenarios.

Need Help with Percentage Calculations?

Our free calculator makes percentage problems simple – get accurate answers now!

Solve Percentage Problems Instantly! →

Understanding Percentages

A percentage is simply a way of expressing a number as a fraction of 100. The word "percent" literally means "per hundred." So, 25% means 25 out of every 100, or 25/100.

Three Common Percentage Problems

Let's tackle the three main types of percentage problems you'll encounter:

  1. Finding a Percentage of a Number: What is X% of Y?

    Example: What is 15% of 200?

    Formula: (X/100) * Y

    Solution: (15/100) * 200 = 30

  2. Finding What Percentage One Number Is of Another: X is what percent of Y?

    Example: 30 is what percent of 150?

    Formula: (X / Y) * 100

    Solution: (30 / 150) * 100 = 20%

  3. Calculating Percentage Increase or Decrease: What is the percentage change from X to Y?

    Example: What is the percentage increase from 80 to 100?

    Formula: ((Y - X) / X) * 100

    Solution: ((100 - 80) / 80) * 100 = 25%

Real-World Applications

Percentage calculations are everywhere! Here are just a few examples:

  • Discounts and Sales: Calculating the final price after a discount.
  • Taxes: Figuring out the amount of sales tax or VAT.
  • Finance: Understanding interest rates on loans or investments.
  • Statistics: Interpreting data presented as percentages.
  • Everyday Life: Calculating tips at restaurants, understanding nutritional information on food labels.

Making it Easy with Our Percentage Calculator

Struggling with these calculations? Don't worry! Our percentage calculator is designed to simplify these problems for you. With just a few clicks, you can solve all three types of percentage problems described above.

  1. Easily find what percent of a number is (like what is 15% of 200)
  2. Figure out what percentage one number is of another (like 30 is what percent of 150)
  3. Calculate how much something increased or decreased in percentage terms (like going from 80 to 100)

It's accessible on your phone or computer, so you can quickly solve percentage problems whenever and wherever you need to. Say goodbye to manual calculations and hello to instant results!

Worked Examples

Here are a few more examples to solidify your understanding:

  1. Problem: A store is offering a 20% discount on a shirt that originally costs $35. What is the sale price? Solution: Discount = (20/100) * $35 = $7. Sale Price = $35 - $7 = $28. You can verify this using our calculator!
  2. Problem: You scored 75 out of 90 on a test. What percentage did you get? Solution: Percentage = (75/90) * 100 = 83.33%. Use our calculator to quickly determine this.
  3. Problem: A company's revenue increased from $100,000 to $120,000. What is the percentage increase? Solution: Percentage Increase = (($120,000 - $100,000) / $100,000) * 100 = 20%. Quickly solve this in our percentage increase option

Tips for Mastering Percentages

  • Practice Regularly: The more you practice, the more comfortable you'll become with percentage calculations.
  • Understand the Formulas: Knowing the formulas will help you solve problems more efficiently.
  • Use Real-World Examples: Relate percentage problems to everyday situations to make them more relevant.
  • Embrace Technology: Use our percentage calculator to check your answers and save time.